Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 997
Filtrar
1.
Aging Med (Milton) ; 7(1): 90-95, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38571677

RESUMO

Aging is an extremely intricate and progressive phenomenon that is implicated in many physiological and pathological conditions. Icariin (ICA) is the main active ingredient of Epimedium and has exhibited multiple bioactivities, such as anti-tumor, neuroprotective, antioxidant, anti-inflammatory, and anti-aging properties. ICA could extend healthspan in both invertebrate and vertebrate models. In this review, the roles of ICA in protection from declined reproductive function, neurodegeneration, osteoporosis, aging intestinal microecology, and senescence of cardiovascular system will be summarized. Furthermore, the underlying mechanisms of ICA-mediated anti-aging effects will be introduced. Finally, we will discuss some key aspects that constrain the usage of ICA in clinical practice and the corresponding strategies to solve these issues.

2.
Colloids Surf B Biointerfaces ; 239: 113903, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38599036

RESUMO

Nicotinamide mononucleotide (NMN) is being investigated for its ability to address the decline in NAD+ level during aging. This study aimed to construct a delivery system based on ovalbumin and fucoidan nanoparticles to ameliorate the bioaccessibility of NMN by increasing NAD+ level in aging mouse model. The NMN-loaded ovalbumin and fucoidan nanoparticles (OFNPs) were about 177 nm formed by the interplay of hydrogen bonds between ovalbumin and fucoidan. Compared with free NMN, NMN-loaded OFNPs intervention could obviously improve the antioxidant enzyme activity of senescent cell induced by D-galactose. The NMN-loaded OFNPs treatment could ameliorate the loss of weight and organ index induced by senescence, and maintain the water content for the aging mice. The Morris maze test indicated that hitting blind side frequency and escape time of NMN-loaded OFNPs group decreased by 13% and 35% compared with that of free NMN group. Furthermore, the NMN-loaded OFNPs significantly alleviated the age-related oxidative stress and increased the generation of NAD+ 1.34 times by improving the bioaccessibility of NMN. Our data in this study supplied a strategy to enhance the bioavailability of NMN in senescence treatment.

3.
J Sci Food Agric ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591735

RESUMO

BACKGROUND: Peptides have been studied in Caenorhabditis elegans for anti-aging research recently. Due to the lack of sufficient evidence, we conducted this meta-analysis focusing on the anti-aging effect of peptides in C. elegans to provide more convincing evidence. RESULTS: A literature search in PubMed, SCOUPUS, and Web of Science databases yielded 2879 articles. After removing duplicates and based on inclusion criteria and STAIR checklist quality assessment, 9 articles were selected. Data extraction and analysis showed that, compared to the control group without peptide intervention, peptide supplementation significantly reduced nematode mortality risk (HR= 0.54, 95% CI = 0.47, 0.62; p < 0.05), significantly increased the pharyngeal pumping rate (SMD = 1.64, 95% CI = 0.87, 2.41; p < 0.05), bending frequency (SMD = 1.67, 95% CI =1.16, 2.18; p < 0.05), and significantly decreased the accumulation of lipofuscin levels within nematodes (SMD = -4.48, 95% CI = -6.85, -2.12; p < 0.05). Additionally, subgroup analysis showed that doses ranging from 0.1-1 kg m3 ^-1 (HR= 0.50, 95% CI = 0.38, 0.65; p < 0.05) displayed better anti-aging effects compared to other dose ranges. CONCLUSION: The findings suggest that peptides can significantly extend the lifespan of C. elegans under normal circumstances and improve three indicators of healthylife. More importantly, subgroup analysis revealed that a dosage of 0.1-1 kg m3 ^-1 demonstrated superior anti-aging effects. This meta-analysis provides more convincing evidence that peptides can play an anti-aging role in C. elegans. This article is protected by copyright. All rights reserved.

4.
Geroscience ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630424

RESUMO

The National Institute on Aging Interventions Testing Program (ITP) has so far identified 12 compounds that extend the lifespan of genetically heterogeneous mice using the log-rank test. However, the log-rank test is relatively insensitive to any compound that does not uniformly reduce mortality across the lifespan. This test may thus miss compounds that only reduce mortality before midlife, for example, a plausible outcome if a compound only mitigates risk factors before midlife or if its efficacy is reduced at later ages. We therefore reanalyzed all data collected by the ITP from 2004-2022 using the Gehan test, which is more sensitive to mortality differences earlier in the life course and does not assume a uniformly reduced mortality hazard across the lifespan. The Gehan test identified 5 additional compounds, metformin, enalapril, 17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride (17-DMAG), caffeic acid phenethyl ester (CAPE), and green tea extract (GTE), which significantly increased survival but were previously missed by the log-rank test. Three (metformin, enalapril, and 17-DMAG) were only effective in males and two (CAPE and GTE) were only effective in females. In addition, 1,3-butanediol, which by log-rank analysis increased survival in females but not males, increased survival in males by the Gehan test. These results suggest that statistical tests sensitive to non-uniformity of drug efficacy across the lifespan should be included in the standard statistical testing protocol to minimize overlooking geroprotective interventions.

5.
Biochemistry (Mosc) ; 89(2): 322-340, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622099

RESUMO

Various environmental morphological and behavioral factors can determine the longevity of representatives of various taxa. Long-lived species develop systems aimed at increasing organism stability, defense, and, ultimately, lifespan. Long-lived species to a different extent manifest the factors favoring longevity (gerontological success), such as body size, slow metabolism, activity of body's repair and antioxidant defense systems, resistance to toxic substances and tumorigenesis, and presence of neotenic features. In continuation of our studies of mammals, we investigated the characteristics that distinguish long-lived ectotherms (crocodiles and turtles) and compared them with those of other ectotherms (squamates and amphibians) and endotherms (birds and mammals). We also discussed mathematical indicators used to assess the predisposition to longevity in different species, including standard indicators (mortality rate, maximum lifespan, coefficient of variation of lifespan) and their derivatives. Evolutionary patterns of aging are further explained by the protective phenotypes and life history strategies. We assessed the relationship between the lifespan and various studied factors, such as body size and temperature, encephalization, protection of occupied ecological niches, presence of protective structures (for example, shells and osteoderms), and environmental temperature, and the influence of these factors on the variation of the lifespan as a statistical parameter. Our studies did not confirm the hypothesis on the metabolism level and temperature as the most decisive factors of longevity. It was found that animals protected by shells (e.g., turtles with their exceptional longevity) live longer than species that have poison or lack such protective adaptations. The improvement of defense against external threats in long-lived ectotherms is consistent with the characteristics of long-lived endotherms (for example, naked mole-rats that live in underground tunnels, or bats and birds, whose ability to fly is one of the best defense mechanisms).


Assuntos
Envelhecimento , Longevidade , Animais , Estresse Oxidativo , Antioxidantes , Mamíferos
6.
Biofactors ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572919

RESUMO

Klotho is an antiaging protein that has multiple functions. The purpose of this study is to investigate whether soluble klotho plays a role in cellular stress response pathways. We found that klotho deficiency (kl-/-) largely decreased HSF1 levels and impaired heat shock protein expression. Interestingly, recombinant soluble klotho-induced HSF1 and HSPs such as HSP90, HSP70, and HSP27 in kl-/- mouse embryonic fibroblasts (MEFs). Soluble Klotho treatment also induced cell proliferation and HSF1 promoter activity in MEF kl-/- cells in a concentration-dependent manner. Furthermore, using point mutagenesis, we identified regulatory/binding sites of transcription factors EGR1 regulated by soluble klotho in the HSF1 promoter. Taken together, our findings unravel the molecular basis of klotho and provide molecular evidence supporting a direct interaction between soluble klotho and HSF1-mediated stress response pathway.

7.
Mech Ageing Dev ; 219: 111929, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561164

RESUMO

The concept of the Land of Not-Unhappiness refers to the potential achievement of eliminating the pathologies of the aging process. To inform of how close we are to settling in the land, we summarize and review the achievements of research on anti-aging interventions over the last hundred years with a specific focus on strategies that slow down metabolism, compensate for aging-related losses, and target a broad range of age-related diseases. We critically evaluate the existing interventions labeled as "anti-aging," such as calorie restriction, exercise, stem cell administration, and senolytics, to provide a down-to-earth evaluation of their current applicability in counteracting aging. Throughout the text, we have maintained a light tone to make it accessible to non-experts in biogerontology, and provide a broad overview for those considering conducting studies, research, or seeking to understand the scientific basis of anti-aging medicine.

8.
Skin Res Technol ; 30(4): e13687, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566505

RESUMO

BACKGROUND: The physical appearance of an individual plays a primary role as it influences the opinion of the viewer. For this reason, orthodontic therapy to improve perceived aesthetics is in high demand among patients. This factor, combined with the increase in the number of non-invasive facial aesthetic treatments, has led to the need to understand potential risk factors in the application of medical devices to the perioral skin in patients with fixed orthodontic appliances. The aim of this study was to evaluate in vitro heating of the orthodontic bracket following electromagnetic fields and negative pressure (V-EMF) used as an anti-aging treatment. METHODS: Two different types of titanium alloy wires, one made of "beta-Titanium" alloy and the other "Ni-Ti" (DW Lingual Systems GmbH-Bad Essen-Germany) were used. The orthodontic wires and brackets mounted on a resin mouth were covered with porcine muscle tissue, then subjected to anti-aging therapy with a Bi-one LifeTouchTherapy medical device (Expo Italia Srl-Florence-Italy) which generates a combination of vacuum and electromagnetic fields (V-EMF) already adopted for antiaging therapy. During administration of the therapy, the orthodontic brackets and porcine tissue were thermally monitored using a Wavetek Materman TMD90 thermal probe (Willtek Communications GmbH-Germany). In total 20 orthodontic mouths were used, 10 with Beta Titanium wires and 10 with Nickel Titanium wires. RESULTS: A temperature increase of about 1°C was recorded in each group. The outcome of the present research shows that the absolute temperatures measured on orthodontic appliances, which, despite having a slightly different curve, both show an increase in temperature of 1.1°C at the end of the session, thus falling well within the safety range of 2°C as specified by the standard CENELEC EN 45502-1. Therefore, V-EMF therapy can be considered safe for the entire dental system and for metal prostheses, which tend to heat up at most as much as biological tissue (+0.9°C/1.1°C vs. 1.1°C/1.1°C). CONCLUSION: In conclusion, anti-aging therapy with V-EMF causes a thermal increase on orthodontic brackets that is not harmful to pulp health.


Assuntos
Campos Eletromagnéticos , Níquel , Titânio , Humanos , Animais , Suínos , Vácuo , Calefação , Fios Ortodônticos , Ligas , Teste de Materiais
9.
Int J Biol Macromol ; 266(Pt 2): 131171, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574920

RESUMO

This study explored the structures of three polysaccharides from Bupleurum chinense DC. (BCPRs), and evaluated their antioxidant and anti-aging properties. The HPGPC and ion chromatography analyses revealed that the molecular weights of the BCPRs ranged from 12.05 to 21.20 kDa, and were primarily composed of rhamnose, arabinose, xylose, galactose, glucose and galacturonic acid. Methylation and NMR studies identified 10 PMAAs, establishing the various backbones of BCPRs 1-3. BCPR-3 demonstrated potent antioxidant activities, including DPPH, ABTS, hydroxy, and superoxide radicals scavenging in vitro. At concentrations between 125 and 500 µg/mL, BCPR-3 increased T-AOC, SOD and GSH-Px activities, while decreasing MDA levels in H2O2-induced SH-SY5Y cells. In addition, RNA-seq results indicated that BCPR-3 considerably downregulated the expression of 49 genes and upregulated five genes compared with the control group. KEGG analysis suggested that these differentially expressed genes (DEGs) were predominantly involved in the TNF and PI3K/Akt signaling pathways. Furthermore, in vivo experiment with Drosophila melanogaster showed that BCPR-3 could extend the average lifespan of flies. In conclusion, polysaccharides from B. chinense exhibited potential antioxidant and anti-aging activities, which could be developed as new ingredients to combat oxidative stress damage and slow the aging process.

10.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611748

RESUMO

Stem cell-derived exosomes (SC-Exos) are used as a source of regenerative medicine, but certain limitations hinder their uses. The effect of hydrolyzed collagen oligopeptides (HCOPs), a functional ingredient of SC-Exos is not widely known to the general public. We herein evaluated the combined anti-aging effects of HCOPs and exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-Exos) using a senescence model established on human skin fibroblasts (HSFs). This study discovered that cells treated with HucMSC-Exos + HCOPs enhanced their proliferative and migratory capabilities; reduced both reactive oxygen species production and senescence-associated ß-galactosidase activity; augmented type I and type III collagen expression; attenuated the expression of matrix-degrading metalloproteinases (MMP-1, MMP-3, and MMP-9), interleukin 1 beta (IL-1ß), and tumor necrosis factor-alpha (TNF-α); and decreased the expression of p16, p21, and p53 as compared with the cells treated with HucMSC-Exos or HCOPs alone. These results suggest a possible strategy for enhancing the skin anti-aging ability of HucMSC-Exos with HCOPs.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Fibroblastos , Envelhecimento , Colágeno Tipo III , Cordão Umbilical
11.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612433

RESUMO

Curcumin is a polyphenolic molecule derived from the rhizoma of Curcuma longa L. This compound has been used for centuries due to its anti-inflammatory, antioxidant, and antimicrobial properties. These make it ideal for preventing and treating skin inflammation, premature skin ageing, psoriasis, and acne. Additionally, it exhibits antiviral, antimutagenic, and antifungal effects. Curcumin provides protection against skin damage caused by prolonged exposure to UVB radiation. It reduces wound healing times and improves collagen deposition. Moreover, it increases fibroblast and vascular density in wounds. This review summarizes the available information on the therapeutic effect of curcumin in treating skin diseases. The results suggest that curcumin may be an inexpensive, well-tolerated, and effective agent for treating skin diseases. However, larger clinical trials are needed to confirm these observations due to limitations in its in vivo use, such as low bioavailability after oral administration and metabolism.


Assuntos
Senilidade Prematura , Curcumina , Dermatite , Psoríase , Dermatopatias , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Dermatopatias/tratamento farmacológico , Pele
12.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612532

RESUMO

Cherry stems, prized in traditional medicine for their potent antioxidant and anti-inflammatory properties, derive their efficacy from abundant polyphenols and anthocyanins. This makes them an ideal option for addressing skin aging and diseases. This study aimed to assess the antioxidant and anti-inflammatory effects of cherry stem extract for potential skincare use. To this end, the extract was first comprehensively characterized by HPLC-ESI-qTOF-MS. The extract's total phenolic content (TPC), antioxidant capacity, radical scavenging efficiency, and its ability to inhibit enzymes related to skin aging were determined. A total of 146 compounds were annotated in the cherry stem extract. The extract effectively fought against NO· and HOCl radicals with IC50 values of 2.32 and 5.4 mg/L. Additionally, it inhibited HYALase, collagenase, and XOD enzymes with IC50 values of 7.39, 111.92, and 10 mg/L, respectively. Based on the promising results that were obtained, the extract was subsequently gently integrated into a cosmetic gel at different concentrations and subjected to further stability evaluations. The accelerated stability was assessed through temperature ramping, heating-cooling cycles, and centrifugation, while the long-term stability was evaluated by storing the formulations under light and dark conditions for three months. The gel formulation enriched with cherry stem extract exhibited good stability and compatibility for topical application. Cherry stem extract may be a valuable ingredient for creating beneficial skincare cosmeceuticals.


Assuntos
Antocianinas , Cosméticos , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia
13.
Front Pharmacol ; 15: 1384227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601465

RESUMO

Objective: In humans, aging is associated with increased susceptibility to most age-related diseases. Phloretic acid (PA), a naturally occurring compound found in Ginkgo biloba and Asparagus, exhibits has potential as an anti-aging agent and possesses antioxidant, anti-inflammatory, and immunomodulatory properties. This study aimed to investigate the effects of PA on longevity and stress resistance in Caenorhabditis elegans (C.elegans) and the mechanisms that underlie its effects. Methods: First, we examined the effects of PA on lifespan and healthspan assay, stress resistance and oxidative analysis, lipofuscin levels. Second, we examined the insulin/insulin-like pathway, mitochondria, autophagy-related proteins, and gene expression to explain the possible mechanism of PA prolonging lifespan. Results: Our findings demonstrated that PA dose-dependently extended the C.elegans lifespan, with 200 µM PA showing the greatest effect and increased the C.elegans lifespan by approximately 16.7%. PA enhanced motility and the pharyngeal pumping rate in senescent C.elegans while reducing the accumulation of aging pigments. Further investigations revealed that daf-16, skn-1, and hsf-1 were required for mediating the lifespan extension effect of PA in C.elegans since its impact was suppressed in mutant strains lacking these genes. This suggests that PA activates these genes, leading to the upregulation of downstream genes involved in stress response and senescence regulation pathways. Furthermore, PA did not extend the lifespan of the RNAi atg-18 and RNAi bec-1 but it attenuated SQST-1 accumulation, augmented autophagosome expression, upregulated autophagy-related gene expression, and downregulated S6K protein levels. These findings suggest that the potential life-extending effect of PA also involves the modulation of the autophagy pathway. Conclusion: These findings results highlight the promising anti-aging effects of PA and warrant further investigation into its pharmacological mechanism and medicinal development prospects.

14.
Int J Biol Macromol ; 267(Pt 2): 131634, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636747

RESUMO

Oxidative damage is an important cause of aging. The antioxidant and anti-aging activities of Longan polysaccharides, especially purified Longan polysaccharides, have not been thoroughly investigated. Therefore, this study aimed to investigate the antioxidant and anti-aging activities and mechanisms of crude polysaccharides and purified polysaccharides from Longan. A purified acidic Longan polysaccharide LP-A was separated from Longan crude polysaccharide LP. Subsequently, its structural characterization, anti-aging activity and mechanism were studied. The results showed that LP-A was an acidic heteropolysaccharide with an average molecular weight (Mw) of 4.606 × 104 Da which was composed of nine monosaccharides. The scavenging rate of ABTS free radical in vitro reached 99 %. In the nematode life experiment, 0.3 mg/mL LP group and LP-A group could prolong the average lifespan of nematodes by 9.31 % and 25.80 %, respectively. Under oxidative stress stimulation, LP-A group could prolong the survival time of nematodes by 69.57 %. In terms of mechanism, Longan polysaccharide can regulate insulin / insulin-like growth factor (IIS) signaling pathway, increase the activity of antioxidant enzymes, reduce lipid peroxidation, enhance the body's resistance to stress damage, and effectively prolong the lifespan of nematodes. In conclusion, LP-A has better anti-aging activity than crude polysaccharide LP, which has great potential for developing as an anti-aging drug.

15.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612681

RESUMO

Small-molecule positive allosteric modulator 1 (SPAM1), which targets pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1-R), has been found to have a neuroprotective effect, and the underlying mechanism was explored in this study. First, using a D-galactose (D-gal)-induced aging mouse model, we confirmed that SPAM1 improves the structure of the hippocampal dentate gyrus and restores the number of neurons. Compared with D-gal model mice, SPAM1-treated mice showed up-regulated expression of Sirtuin 6 (SIRT6) and Lamin B1 and down-regulated expression of YinYang 1 (YY1) and p16. A similar tendency was observed in senescent RGC-5 cells induced by long-term culture, indicating that SPAM1 exhibits significant in vitro and in vivo anti-senescence activity in neurons. Then, using whole-transcriptome sequencing and proteomic analysis, we further explored the mechanism behind SPAM1's neuroprotective effects and found that SPAM is involved in the longevity-regulating pathway. Finally, the up-regulation of neurofilament light and medium polypeptides indicated by the proteomics results was further confirmed by Western blotting. These results help to lay a pharmacological network foundation for the use of SPAM1 as a potent anti-aging therapeutic drug to combat neurodegeneration with anti-senescence, neuroprotective, and nerve regeneration activity.


Assuntos
Proteômica , Transcriptoma , Animais , Camundongos , Perfilação da Expressão Gênica , Envelhecimento/genética , Longevidade , Galactose/farmacologia
16.
Adv Biol (Weinh) ; : e2400138, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616173

RESUMO

Yeast is an excellent model organism for research for regulating aging and lifespan, and the studies have made many contributions to date, including identifying various factors and signaling pathways related to aging and lifespan. More than 20 years have passed since molecular biological perspectives are adopted in this research field, and intracellular factors and signal pathways that control aging and lifespan have evolutionarily conserved from yeast to mammals. Furthermore, these findings have been applied to control the aging and lifespan of various model organisms by adjustment of the nutritional environment, genetic manipulation, and drug treatment using low-molecular weight compounds. Among these, drug treatment is easier than the other methods, and research into drugs that regulate aging and lifespan is consequently expected to become more active. Chronological lifespan, a definition of yeast lifespan, refers to the survival period of a cell population under nondividing conditions. Herein, low-molecular weight compounds are summarized that extend the chronological lifespan of Saccharomyces cerevisiae and Schizosaccharomyces pombe, along with their intracellular functions. The low-molecular weight compounds are also discussed that extend the lifespan of other model organisms. Compounds that have so far only been studied in yeast may soon extend lifespan in other organisms.

17.
Biogerontology ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619670

RESUMO

Polyalthia longifolia is well-known for its abundance of polyphenol content and traditional medicinal uses. Previous research has demonstrated that the methanolic extract of P. longifolia leaves (PLME, 1 mg/mL) possesses anti-aging properties in Saccharomyces cerevisiae BY611 yeast cells. Building on these findings, this study delves deeper into the potential antiaging mechanism of PLME, by analyzing the transcriptional responses of BY611 cells treated with PLME using RNA-sequencing (RNA-seq) technology. The RNA-seq analysis results identified 1691 significantly (padj < 0.05) differentially expressed genes, with 947 upregulated and 744 downregulated genes. Notably, the expression of three important aging-related genes, SIR2, SOD1, and SOD2, showed a significant difference following PLME treatment. The subsequent integration of these targeted genes with GO and KEGG pathway analysis revealed the multifaceted nature of PLME's anti-aging effects in BY611 yeast cells. Enriched GO and KEGG analysis showed that PLME treatment promotes the upregulation of SIR2, SOD1, and SOD2 genes, leading to a boosted cellular antioxidant defense system, reduced oxidative stress, regulated cell metabolism, and maintain genome stability. These collectively increased longevities in PLME-treated BY611 yeast cells and indicate the potential anti-aging action of PLME through the modulation of SIR2 and SOD genes. The present study provided novel insights into the roles of SIR2, SOD1, and SOD2 genes in the anti-aging effects of PLME treatment, offering promising interventions for promoting healthy aging.

18.
Front Pharmacol ; 15: 1370631, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606177

RESUMO

Introduction: Rana dybowskii Guenther (RDG), as a traditional Chinese medicine, has been shown to have antioxidant effects. However, studies on the anti-aging effect of RDG are still limited. Methods: In this study, we prepared polysaccharides from the skin of RDG (RDGP) by hot water extraction, alcohol precipitation, ion-exchange chromatography and gel chromatography. The proteins were removed using the Sevage method in combination with an enzymatic method. The structural features were analyzed using high-performance gel permeation chromatography, ß-elimination reaction and Fourier transform infrared spectra. The anti-aging effect of RDGP was investigated by using D-Gal to establish an aging model in mice, and pathological changes in the hippocampus were observed under a microscope. Results: We obtained the crude polysaccharide DGP from the skin of RDG, with a yield of 61.8%. The free protein was then removed by the Sevage method to obtain DGPI and deproteinated by enzymatic hydrolysis combined with the Sevage method to further remove the bound protein to obtain the high-purity polysaccharide DGPII. Then, DGPIa (1.03 × 105 Da) and DGPIIa (8.42 × 104 Da) were obtained by gel chromatography, monosaccharide composition analysis showed that they were composed of Man, GlcA, GalNAc, Glc, Gal, Fuc with molar ratios of 1: 4.22 : 1.55: 0.18 : 8.05: 0.83 and 0.74 : 1.78: 1: 0.28: 5.37 : 0.36, respectively. The results of the ß-elimination reaction indicated the presence of O-glycopeptide bonds in DGPIa. The Morris water maze test indicated that mice treated with DGPIIa exhibited a significantly shorter escape latency and increased time spent in the target quadrant as well as an increase in the number of times they traversed the platform. Pathologic damage to the hippocampus was alleviated in brain tissue stained with hematoxylin-eosin. In addition, DGPIIa enhanced the activities of SOD, CAT, and GSH-Px and inhibited the level of MDA in the serum and brain tissues of aging mice. Discussion: These results suggest that RDGP has potential as a natural antioxidant and provide useful scientific information for anti-aging research.

19.
Precis Clin Med ; 7(1): pbae004, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516531

RESUMO

Owing to its constant exposure to the external environment and various stimuli, skin ranks among the organs most vulnerable to manifestations of aging. Preventing and delaying skin aging has become one of the prominent research subjects in recent years. Mesenchymal stem cells (MSCs) are multipotent stem cells derived from mesoderm with high self-renewal ability and multilineage differentiation potential. MSC-derived extracellular vesicles (MSC-EVs) are nanoscale biological vesicles that facilitate intercellular communication and regulate biological behavior. Recent studies have shown that MSC-EVs have potential applications in anti-aging therapy due to their anti-inflammatory, anti-oxidative stress, and wound healing promoting abilities. This review presents the latest progress of MSC-EVs in delaying skin aging. It mainly includes the MSC-EVs promoting the proliferation and migration of keratinocytes and fibroblasts, reducing the expression of matrix metalloproteinases, resisting oxidative stress, and regulating inflammation. We then briefly discuss the recently discovered treatment methods of MSC-EVs in the field of skin anti-aging. Moreover, the advantages and limitations of EV-based treatments are also presented.

20.
Heliyon ; 10(6): e28283, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524603

RESUMO

Abscisic acid (ABA) is a plant hormone with various biological activities. Aging is a natural process accompanied by cognitive and physiological decline, and aging and its associated diseases pose a serious threat to public health, but its mechanisms remain insufficient. Therefore, the purpose of this study was to investigate the ameliorative effects of ABA on d-galactose (D-Gal)-induced aging in mice and to delve into its molecular mechanisms. Aging model was es-tablished by theintraperitoneal injection of D-Gal. We evaluated the oxidative stress by measuring superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT) levels in serum. Proteins content in brain were determined by Western blot. D-Gal-induced brain damage was monitored by measuring the levels of acetylcholinesterase (AChE) content and hematoxylin-eosin staining (H&E). To evaluate the effects of ABA on aging, we measured the gut microbiota. The results demonstrated that ABA increased SOD, CAT and AChE, decreased MDA level. H&E staining showed that ABA could improve D-Gal-induced damage. In addition, ABA regulated the B-cell-lymphoma-2 (BCL-2) family and Phosphatidylinositol 3-kinase/Protein kinase B (PI3K/AKT) signaling pathway, while further regulating the acetylation of p53 protein by modulating the AMPK pathway and activating SIRT1 protein, thereby inhibiting the apoptosis of brain neurons and thus regulating the aging process. Interestingly, ABA improved the ratio of intestinal bacteria involved in regulating multiple metabolic pathways in the aging process, such as Bacteroides, Firmicutes, Lactobacillus and Ak-kermansia. In conclusion, the present study suggests that ABA may be responsible for improving and delaying the aging process by enhancing antioxidant activity, anti-apoptosis and regulating intestinal flora.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...